AUGUST 2021 EBS 169J TRIGONOMETRY 1 HOUR 20 MINUTES Candidate's Index Number: ABUE/JHS/20/0170 Signature:

UNIVERSITY OF CAPE COAST COLLEGE OF EDUCATION STUDIES SCHOOL OF EDUCATIONAL DEVELOPMENT AND OUTREACH INSTITUTE OF EDUCATION

COLLEGES OF EDUCATION FOUR-YEAR BACHELOR OF EDUCATION (B.ED) FIRST YEAR, END-OF-SECOND SEMESTER EXAMINATION, AUGUST 2021

AUGUST 6, 2021

1.

TRIGONOMETRY

2:40 PM - 4:00 PM

SECTION B

Answer only THREE questions from this section. All questions carry equal marks.

- a. A central angle θ subtended by an arc length of 7cm and a radius of 4cm. Find:
 - the radian measure
 - ii. the degree measure
 - iii. the area of the sector determined by θ .

(8 Marks)

- b. Two towns, $P(30^{\circ}N, 42^{\circ}W)$ and $Q(30^{\circ}N, 18^{\circ}E)$ are on the surface of the earth. Find, to one decimal place, the distance between P and Q along latitude 30° N. (Take the radius to be 6400km and $\pi = 3.14$).
 - (12 Marks)
- 2. a. Show that the equation is an identity by transforming the left – hand side into the right - hand side.

 $(\sec\theta + \tan\theta)(1-\sin\theta) = \cos\theta.$

(8 Marks)

- b. Show that $3\cos\theta + 4\sin\theta$ may be expressed in the form $R\cos(\theta \alpha)$. where α is acute. Find the values of:
 - i. R
 - ii. α .

(12 Marks)

- 3.

 a. Find the amplitude, the period, and the phase shift and sketch the graph of $y = 2\cos(3x \pi)$. (10 Marks)
 - b. A helicopter sets out from its base P and flies on a bearing of 123* to point Q where it changes its course to 060* and flies 18km to point R.
 - i. Find the size of the angle PQR.
 - ii. calculate the bearing on which the helicopter must fly to return directly to its base. When the helicopter is at point R it is 22km from its starting point. (10 Marks)
- Express cos⁴ x in terms of values of the cosine function with exponent 1. (8 Marks)
 - b. When the angle of elevation of the sun is 64', a telephone pole that is tilted at an angle of 9' directly away from the sun casts a shadow 21 feet long on level ground. Calculate the approximate length of the pole.